
 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp..6699--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.010 Page | 69

Abstract --This paper presents a raspberry pi based wearable device capable of streaming live audio and video on to the dedicated
server and to android based mobile phones and tablets using gstreamer technology. This device is made with the consideration to
provide security to the user such that in case of any danger, the user would be able to send panic signal to the server and through
live footage of the scene, the response team can react accordingly. The gadget is accessible to the user through its application
made currently for android enabled smart devices. The application provides the functionality of clicking, sharing, and publishing
pictures and videos. In addition to that the application utilizes the gps present inside the smart device and send its location to the
dedicated server through the device network on user demand.
Keywords: Raspberry Pi, Gstreamer, Security, Live audio and video streaming.

1. INTRODUCTION:

Capturing unexpected moments, Stream live video footage, Sharing capability, Webcam connectivity are some
prime features of the gadget which makes it multipurpose. There are variosu applications in which the gadget can fit
like Remote Surveillance, Robotic applications, Streaming live event, Remote Class Room teaching, GPS tracking,
Security applications etc. The gadget is made using raspberry pi. Raspberry pi is a programmable single board
computer and can be used to perform multi-processing tasks. We used raspberry pi as a mediator between camera
and the end devices. It processes the data received from the camera, encode it, build a pipeline, and send it via udp
or tcp network protocol. Gstreamer technology is used to build pipeline for sending and receiving camera feeds.
GStreamer is an open source framework for constructing pipeline consisting of media handling elements.

[Fig:1 - Block diagram]

2. DEVICE COMPONENTS: SOFTWARE AND HARDWARE

Raspberry pie: Raspberry pi is a programmable single board computer and can be used to perform multi-
processing tasks. the Pi comes in three configurations. Below is a table that gives the details about all
three models namely A, B and B+.

Akash Dhamasia Kunal Prajapati Prof. Parita Oza
Nirma University Nirma University Nirma University

 Ahmedabad, India Ahmedabad, India Ahmedabad, India
akash.dhamasia12@gmail.com 11bce111@nirmauni.ac.in parita.prajapati@nirmauni.ac.in

WWeeaarraabbllee lliivvee ssttrreeaammiinngg ggaaddggeett uussiinngg
 RRaassppbbeerrrryy ppii

���������

�	

�� ���

� � ���

� ��	�
���	��

� ���

����

�������� ��

��� �����	���

������
��� �

� 	

����	

�

���

�

���

 VVoolluummee 77 •• NNuummbbeerr 11 SSeeppt

Fig 2- Raspberry pi Models

As shown in figure, 3 USB ports are required, c
otherwise all Model would have been able to work.
Camera module: The Raspberry Pi camera module can be used to take high
photographs. It attaches via a 15cm ribbon cable to the CSI port on the Raspberry Pi.
USB Wi-Fi adapter:To connect Raspberry pi to network
Mic + USB sound card:The Raspberry Pi comes with a 3.5mm analogue stereo audio output, but no
input a usb sound card is required.
Gstreamer:Open source library for constructing graphs of media
FFmpeg:It’s a complete, cross-platform solution to reco
ALSA:Advanced Linux Sound Architecture
drivers.
Gstreamer SDK: Android application
pipeline.
Wowza media streaming Engine:Wowza Media Engine is very popular streaming engine which can stream high
quality video and audio.

3. WORKING PRINCIPLE:

Audio and Video Streaming:Streaming
the data is too big to send in one go it is cut in to smaller packets of data. These packets are then send sequentially.
In order to decrease the size of the data it is often compr
same. Basically a video is compressed and then send in packets through a transport.
Methods of compressing video data:The first is 'Inter
image in the video as a JPEG image. An example compression algorithm that works accordingly is Motion
Other examples are DV and HuffYUV.The second method is 'Intra
differences in images. If you start with an image
following frames. Some highly sophisticated algorithms have been developed over the years of which the most used
one is H.264. Other examples include Theora, Xvid and Divx. Compression algo
to as a 'codec’.
Methods of transmitting video data:To transport the stream of video data packets there are many possibilities. In
TCP/IP networks an UDP transport is the most simple solution. The
of UDP. Nowadays HTTP is also often used as a transport for streaming video

ptt 22001155 -- MMaarrcchh 22001166 pppp..6699--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccss

DOI: 10.090592/IJCSC.2016.010

 Fig 3- Device Components

As shown in figure, 3 USB ports are required, connection involving raspberry pie. Thus we choose Model B+
therwise all Model would have been able to work.

The Raspberry Pi camera module can be used to take high-definition video, as well as stills
photographs. It attaches via a 15cm ribbon cable to the CSI port on the Raspberry Pi.

connect Raspberry pi to network
Mic + USB sound card:The Raspberry Pi comes with a 3.5mm analogue stereo audio output, but no

Gstreamer:Open source library for constructing graphs of media-handling elements.
platform solution to record, convert and stream audio as well as video.

Linux Sound Architecture is a software framework that provides API for

: Android application which is a complete package for handling different

Wowza Media Engine is very popular streaming engine which can stream high

Streaming technology refers to sending large streams of data between systems. Because
the data is too big to send in one go it is cut in to smaller packets of data. These packets are then send sequentially.
In order to decrease the size of the data it is often compressed. The operating principle of video streaming is the
same. Basically a video is compressed and then send in packets through a transport.

The first is 'Inter-Frame’ based compression. Think of this as saving every
image. An example compression algorithm that works accordingly is Motion

Other examples are DV and HuffYUV.The second method is 'Intra-Frame’ based compression and uses the the
differences in images. If you start with an image the 'Intra-Frame’ based method only tracks the differences in the
following frames. Some highly sophisticated algorithms have been developed over the years of which the most used
one is H.264. Other examples include Theora, Xvid and Divx. Compression algorithms for video are often referred

To transport the stream of video data packets there are many possibilities. In
transport is the most simple solution. The RTP protocol is a transport protocol on top
is also often used as a transport for streaming video

 �!�� 	"

#	
Adapter

����
����

����������

�	

ssjjoouurrnnaallssss..ccoomm

 Page | 70

Thus we choose Model B+

definition video, as well as stills

Mic + USB sound card:The Raspberry Pi comes with a 3.5mm analogue stereo audio output, but no input. For audio

video.
for sound card device

 types of gstreamer

Wowza Media Engine is very popular streaming engine which can stream high

technology refers to sending large streams of data between systems. Because
the data is too big to send in one go it is cut in to smaller packets of data. These packets are then send sequentially.

essed. The operating principle of video streaming is the

Frame’ based compression. Think of this as saving every
image. An example compression algorithm that works accordingly is Motion-JPEG.

Frame’ based compression and uses the the
Frame’ based method only tracks the differences in the

following frames. Some highly sophisticated algorithms have been developed over the years of which the most used
rithms for video are often referred

To transport the stream of video data packets there are many possibilities. In
transport protocol on top

� ��
��

����������

 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp..6699--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.010 Page | 71

Gstreamer:To use the Gstreamer framework it’s easiest to install it on a Linux system. In this example we are using
Ubuntu but the steps should be similar on other platforms. To make sure the framework is installed run the
following command in the terminal:sudo apt-get install gstreamer1.0-tools \

 gstreamer1.0-plugins-base \
 gstreamer1.0-plugins-good \
 gstreamer1.0-plugins-bad \
 gstreamer1.0-plugins-ugly
To have a basic understanding of the Gstreamer framework you need to think of it as a pipeline. The video data
starts at the source and moves to the sink. Meanwhile you can do many things with the video data. Each chain in the
pipeline is called an element. To construct a pipeline we have a very simple command line tool called 'gst-launch’.
To create this pipeline run the following command:gst-launch-1.0 videotestsrc ! autovideosink
The 'gst-launch-1.0’ command uses the exclamation mark (!) to link elements to each in order to create a pipeline.
On the sending side we need to:

1. acquire the video data
2. compress the video data
3. cut the data into smaller packets
4. send the packets out through a network transport

On the receiving side we than want to:
1. receive the packets from the network transport
2. reassemble the packets into video data
3. decompress the video data
4. display the video

In general it is best to lookup the gstreamer plugin documentation to find the elements you need. In the case of a
Motion-JPEG streaming setup using RTP we need the following elements:

1. 'videotestsrc’ & 'autovideosink’ to genereate and display an image
2. 'jpegenc’ & 'jpegdec’ to encode to and decode from JPEG
3. 'rtpjpegpay’ & 'rtpjpegdepay’ to create the RTP packets
4. 'udpsrc’ & 'udpsink’ to transport the RTP packets using UDP

Run the following two commands for the sender and the receiver:
Sender Side: gst-launch-1.0 ! videotestsrc !\

 jpegenc !\
 rtpjpegpay !\
 udpsink host=127.0.0.1 port=5200

Receiver Side:gst-launch-1.0 udpsrc port=5200 ! \
 rtpjpegdepay ! \
 jpegdec ! \

 autovideosink

In this, the receiver will quit immediately with an error. This is because we need to tell the 'rtpjpegdepay’ element
some information about the data it will receive. This is called a 'capsfilter’ in Gstreamer terms. A capsfilter is placed
between the 'pads’ of connecting elements. In Gstreamer events can transfer up and down the pipeline. These events
can be used to pause the pipeline for example but it can also be used for exchanging the capabilities.Now that we
have an example stream working we can replace the 'videotestsrc’ with a webcam. On a Linux system we can use
the 'v4l2src’. We will need a capsfilter to set the webcam’s resolution.This gives us a nice feedback on the latency
involved in this stream. The bandwidth used is about 1800 kbit/s. If we now try a default h.264 encoder we will
notice difference.First, it might take very long for the image to show. This is because the stream first needs to
receive a full keyframe. Second, your computer might not be able to cope with the encoding and decoding. Third,
the latency is much higher (+5s) compared to the Motion-JPEG pipeline. On the other hand the bandwidth is much
lower. About 300 kbit/s. We can tweak the parameters of the x264 encoder (sender) to make it more suitable for live
streaming. You can find out which parameters you can set using the 'gst-inspect’ command. Just try the following
'gst-inspect’ command and match the output with the next 'gst-launch’ example. Running 'gst-inspect’ with no
arguments will list all available elements.

gst-inspect-1.0 x264enc

 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp..6699--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.010 Page | 72

gst-launch-1.0 v4l2src ! \
 video/x-raw,width=640,height=480 ! \
 x264enc tune=zerolatency byte-stream=true \
 bitrate=3000 threads=2 ! \
 h264parse config-interval=1 ! \
 rtph264pay ! udpsink host=127.0.0.1 port=5000

The bandwidth remains about the same (350 kbit/s) but the latency is much improved as well as the burden on the
machine running it.To conclude these example pipelines we still need to know the latencies involved in the
pipelines. Basically the recipe constructs a videostreaming setup which is displaying the image with a timestamp on
the source computer as well as on a remote system. The difference in the timestamp corresponds with your latency
of the pipeline.

Sender:

gst-launch-1.0 v4l2src ! \
 video/x-raw,width=640,height=480 ! \
 timeoverlay ! \
 tee name="local" ! \
 queue ! \
 autovideosink local. ! \
 queue ! jpegenc! rtpjpegpay ! \
 udpsink host=127.0.0.1 port= 5000

Receiver:

gst-launch-1.0 udpsrc port=5000 ! \
 application/x-rtp,\
 encoding-name=JPEG,payload=26 ! \
 rtpjpegdepay ! jpegdec ! autovideosink

4. IMPLEMENTATION:

[Fig 4- Implementation]

We used following gstreamer pipeline to send audio and video to android and wowza media streaming engine.
Raspberry side:To Stream audio over the network: gst-launch alsasrc device=hw:Device ! audioconvert !
audioresample! 'audio/x-raw int,rate=8000,width=16,channels=1' ! udpsink host=x.x.x.x port=5001

 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp..6699--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.010 Page | 73

To Stream video over the network to Andriod device:raspivid -t 999999 -h 720 -w 1080 -fps 25 -hf -b 2000000 -o - |
gst-launch -v fdsrc fd=0 ! h264parse ! rtph264pay ! udpsink host=192.168.0.193 port=8554
Andriod Side:receive video pipeline(Using Gstreamer SDK): data->pipeline = gst_parse_launch("udpsrc port=8554
caps=\"application/x-rtp, media=video, clock-rate=90000, encoding-name=H264,sprop-parameter-
sets=\\\"J2QAFKwrQLj/LwDxImo\\\\=\\\\,KO4fLA\\\\=\\\\=\\\"\", payload=96\" ! rtph264depay byte-stream=false !
ffdec_h264 ! autovideosink sync=false", &error);

To Stream video over the network to Wowza Media Streaming Engine:raspivid -n -mm matrix -w 1280 -h 720 -fps
25 -hf -vf -g 100 -t 0 -b 500000 -o - | ffmpeg -y -f h264 -i - -c:v copy -map 0:0 -f flv -rtmp_buffer 100 -
rtmp_live live rtmp://107.170.xxx.xxx:1935/MyApp/myStream

Finally these pipelines are sent like:raspivid -n -mm matrix -w 1280 -h 720 -fps 25 -hf -vf -g 100 -t 0 -b 500000 -o -
| tee >(ffmpeg -y -f h264 -i - -c:v copy -map 0:0 -f flv -rtmp_buffer 100 -rtmp_live live
rtmp://107.170.xxx.xxx:1935/MyApp/myStream) | gst-launch -v fdsrc fd=0 ! h264parse ! rtph264pay ! udpsink
host=192.168.0.193 port=8554 & gst-launch alsasrc device=hw:Device ! audioconvert ! audioresample ! 'audio/x-
raw-int,rate=8000,width=16,channels=1' ! udpsink host=x.x.x.x port=5001

Audio:Audio is received on port and feed data received to AudioTrack object.
AudioTrack track = new AudioTrack(AudioManager.STREAM_MUSIC,
SAMPLE_RATE,AudioFormat.CHANNEL_CONFIGURATION_MONO,
AudioFormat.ENCODING_PCM_16BIT, BUF_SIZE, AudioTrack.MODE_STREAM);

Getting the user location: Get the location of the users device (via the NETWORK or GPS). This will be latitude and
longitude.

To get a location from the GPS you would just change this line:locationManager.requestLocationUpdates
(LocationManager.NETWORK_PROVIDER, 0, 0, locationListener);To:locationManager.requestLocationUpdates
(LocationManager.GPS_PROVIDER, 0, 0, locationListener);

 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp..6699--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.010 Page | 74

To send to the Internet: Send that off to a server via Http GET

5. ISSUES AND OBSERVATION:

1. It has been found that on increasing the frame rate above 20 fps, the android application tends to drop packets.
2. On increasing resolution from 1080 by 720 to higher, latency also increases.
3. The product is runnable in devices with android api version 9 or higher.

[Fig 5- Distortion in streaming]

6. CONCLUSION:

Minimum lag and best frame rate is achieved using gstreamer framework in audio or video live streaming. The
device is capable to stream live video and audio successfully to android devices and to web browser using wowza
media stream engine over the network. The components used in making of the device are available open source in
the market.

 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp..6699--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.010 Page | 75

7. REFERENCES:

[1] http://www.codeproject.com/Articles/665518/Raspberry-Pi-as-low-cost-HD-surveillance-camera
[2] http://blog.miguelgrinberg.com/post/stream-video-from-the-raspberry-pi-camera-to-web-browsers-even-on-ios-
and-android
[3] http://sanjosetech.blogspot.in/
[4] http://www.raspberry-projects.com/pi/pi-hardware/raspberry-pi-camera/streaming-video-using-gstreamer
[5] http://www.androidhive.info/2014/06/android-streaming-live-camera-video-to-web-page/
[6] https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md
[7] http://www.raspberry-projects.com/pi/pi-operating-systems/raspbian/scripts
[8] http://www.daveconroy.com/turn-raspberry-pi-translator-speech-recognition-playback-60-languages/
[9] http://mutsuda.com/2012/09/07/raspberry-pi-into-an-audio-spying-device/
[10] http://asliceofraspberrypi.blogspot.in/2013/02/adding-audio-input-device.html
[11] http://blog.tkjelectronics.dk/2013/06/how-to-stream-video-and-audio-from-a-raspberry-pi-with-no-latency/
[12] http://labs.isee.biz/index.php/Example_GStreamer_Pipelines#Audio_RTP_Streaming
[13] http://rxwen.blogspot.in/2011/10/stream-audio-via-udp-on-android.html
[14] http://stackoverflow.com/questions/20759243/streaming-h264-using-raspberrypi-camera
[15] http://www.aurigma.com/docs/iu/WritingServerSideUploadCode.htm
[16] https://www.raspberrypi.org/forums/viewtopic.php?f=43&t=73840
[17] http://stackoverflow.com/questions/25914467/android-streaming-live-camera-using-wowza-media-engine
[18] https://www.raspberrypi.org/forums/viewtopic.php?t=45368
[19] http://stackoverflow.com/questions/16238638/how-to-get-gstreamer-for-windows-and-for-android-work-
together-with-h264-over-rt?rq=1
[20] http://stackoverflow.com/questions/23862218/gstreamer-raspberry-pi-and-android-how-to-get-streaming-video
[21] https://www.raspberrypi.org/forums/viewtopic.php?f=43&t=95743
[22] http://pnetherwood.blogspot.in/2015/04/raspberry-pi-video-streaming-to-android.html
[23] http://www.linux-projects.org/modules/sections/index.php?op=viewarticle&artid=16#example11
[24] http://developer.android.com/guide/appendix/media-formats.html
[25] http://www.z25.org/static/_rd_/videostreaming_intro_plab/index.html

